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Abstract 

The advection-diffusion equation is ubiquitous in fluid 
mechanics.  For example, it arises in equations that govern 
turbulence, heat and mass transfer, and these equations form the 
basis of computational fluid dynamics. However, numerical 
schemes for solving the governing equations are often inherently 
dispersive and this confounds the solutions, particularly when the 
effects of dispersion are to be quantified.  In this work, we 
develop a combined compact difference scheme to solve the 
unsteady advection-diffusion equation in three-dimensions. 
Along with the Crank-Nicholson time discretization scheme, the 
combined compact difference scheme demonstrates sixth order 
accuracy in space and second order accuracy in time. The 
alternating direction implicit method has been used in time 
factorization in each direction. The scheme is unconditionally 
stable and significantly eliminates artificial diffusion from the 
solution that usually arises in lower order discretization schemes. 
The compactness of the scheme improves the computational 
efficiency compared to other higher order schemes.  The work 
also discusses the boundary conditions, the correctness of which 
is sensitive to delicate mathematical formulation.  Numerical 
experiments are performed on a generalized advection-diffusion 
problem defined in a cubic region subject to Dirichlet boundary 
conditions.   A known analytical solution to the is used to 
evaluate the performance of the numerical scheme. The three-
dimensional combined compact scheme produces solutions that 
are in very close agreement with the analytical solutions when 
either convection or dispersive effects are dominant. 

Introduction  

The numerical simulation of the advection-diffusion equation 
(ADE) is omnipresent in computational fluid dynamics and heat 
transfer. Many physical phenomena are governed by this 
equation, therefore accurate, efficient and stable finite difference 
schemes to represent the ADE is vital for obtaining a reliable 
numerical solution. Furthermore, attempts to quantify the rate of 
dispersion in the flows may be confounded by the presence of 
artificial diffusion that arises when lower order discretization 
schemes are implemented. Researchers have invested 
considerable effort to develop discretization schemes with higher 
order accuracy. However in most cases, the solution involves 
large stencils which require solution of a denser system of 
equations that result in higher computational cost To overcome 
this issue, combined compact difference (CCD) schemes have 
been developed and used in the solution of many partial 
differential equations in recent years (Sun & Li 2014). 

Gupta et al. (1984) presented a finite difference scheme with 
spatial fourth order accuracy for one dimensional (1D) ADE with 
a variable diffusion coefficient. This scheme has been extended 
to solve two-dimensional (2D) unsteady ADE by Spotz & Carey 
(2001). Nevertheless, the scheme involved nine nodes in the 
difference equation which render it computationally inefficient. 
Noye & Tan (1989) derived a set of higher order compact scheme 

(HOC) implicit schemes for solving 1D steady ADE with third 
and second order accuracy in space and time.  

In pursuit of a computationally effective scheme Karaa & Zhang 
(2004) developed an unconditionally stable fourth order accurate 
HOC schemes with the standard (Paceman-Rachford) alternating 
direction implicit (PR-ADI) method to solve two-dimensional 
time dependent convection diffusion equation with a constant 
diffusion coefficient.  It was later implemented for a 3D unsteady 
ADE by Karaa (2006). The computational efficiency of the 
scheme was superior to other fourth order schemes. The high 
order Padé ADI method (PDE-ADI) proposed by You (2006) 
demonstrates better fidelity of phase and amplitude than the PR-
ADI and HOC-ADI method whilst maintaining a similar order of 
accuracy.  

A series of HOC exponential finite difference schemes (EHOC-
ADI) have been proposed by Tian & Dai (2007) to solve the 1D 
and 2D steady ADEs. This scheme has been revised to solve the 
1D unsteady ADE by adapting the Padé approximation for 
temporal discretization by Tian & Yu (2011).  Furthermore, Tian 
& Ge (2007) and Ge et al. (2013) have extended the approach for 
solving unsteady ADE in 2D and 3D Cartesian coordinates 
respectively. These methods have fourth order accuracy in the 
spatial domain and exhibit non-oscillatory behaviour. Other 
schemes with similar accuracy have been developed as rational 
HOC schemes with ADI method (RHOC-ADI) by Tian (2011) 
and Liao (2012). However, superior accuracy and computational 
efficiency as well as better phase and amplitude error 
characteristics have been demonstrated for the RHOC-ADI 
scheme over HOC-ADI, EHOC-ADI and PDE-ADI methods. 

Most of the schemes discussed above are limited to 
comparatively low cell Peclet numbers and do not possess the 
same level of accuracy when convection becomes the dominant 
mechanism in the flow (Sun & Li 2014). To overcome this 
limitation the combined compact difference (CCD) scheme has 
been proposed by Chu & Fan (1998) for one and two-
dimensional steady ADE. The scheme is a sixth order spatially 
accurate implicit method. Sun & Li (2014) have used the CCD 
method combined with ADI method for solving the two-
dimensional unsteady convection diffusion equation. The three 
point stencil structure of the scheme facilitates high 
computational efficiency. In this work we develop a CCD-ADI 
scheme to solve the unsteady ADE in 3D Cartesian coordinate.  

Development of the CCD scheme 

To visualize the development of three point CCD scheme, we 
consider following one dimensional differential equation 
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With boundary condition 
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Where ߙ, ,ߚ ,ߛ ݂, ,ଵߞ  and ݃ are given functions. Discretising the	ଶߞ
one dimensional domain into a uniform grid 0 ൌ ଵݔ ൏ ଶݔ ൏
⋯…… .൏ ேିଵݔ ൏ ேݔ ൌ ݄	with grid spacing ܮ ൌ  .ܰ/ܮ
Expanding any arbitrary function ߶ሺݔሻ and ݔ, ݅ ൌ 1,2, … . . , ܰ 
using a Taylor series with up to the sixth derivative, we have 
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Similar expressions can be obtained by replacing ߶ሺݔሻ with 
߶ᇱሺݔሻ and ߶ᇱᇱሺݔሻ 
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In order to express the variable with higher order truncation term, 
equations (3) - (5) can be manipulated to develop an expression 
of the variable combined with its first and second derivatives as 
follows- 
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From equation (6) and (7), writing ߶ሺݔሻ ൌ ߶,	the first and 
second derivative at point ݅ can be expressed as 
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Furthermore, equations (8) and (9) can be reorganized into the 
following form and dropping the truncation errors 
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These equations are applicable at nodes ݅ ൌ 2, 3, … . . ܰ െ 1 
resulting a total of 2ሺܰ െ 1ሻ equations. For periodic boundaries 
(߶ଵ ൌ ߶ே, ߶ଵ

ᇱ ൌ ߶ே
ᇱ , and	߶ଵ

ᇱᇱ ൌ ߶ே
ᇱᇱሻ the above equations (10) 

and (11) stands for	݅ ൌ 1. However, for non-periodic boundaries, 
to keep the three point structure at the boundaries, a pair of fifth 
order one sided CCD schemes is introduced as follows at 
 ே (Chu & Fan 1998)ݔ	and	ଵݔ
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Furthermore, equations (1) and (2) can be written in discretized 
form as 
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(15) 

The above system of equations can be organized into a triple 
tridiagonal system consisting of 3ܰ	equations (equation (10) and 
(11) for ݅ ൌ 2,3,… . . ܰ െ 1 giving 2ሺܰ െ 2ሻ equations, equation 
(12) for ݅ ൌ 1 and (13) for ݅ ൌ ܰ giving 2 equations, and 
equations (14) for ݅ ൌ 1,2,3,… . . ܰ	and equation (15) for ݅ ൌ 1, ܰ 
giving ܰ  2 equations) with 3N unknowns (߶, ߶

ᇱ, ܽ݊݀	߶
ᇱᇱ for 

݅ ൌ 1,2,3, … . . ܰ). This system of linear equations can be solved 
by triple forward elimination and triple backward substitutions. A 
simpler version of the algorithm solves a twin tridiagonal system 
which appears while calculating first and second derivatives from 
a given function with the CCD method (discussion to appear in 
later section).  

CCD Scheme for Three-Dimensional Advection-
Diffusion Equation 

The method outlined above has been developed for a one- 
dimensional case. However, most of the cases we have to deal 
with are multidimensional. Consider a three-dimensional 
convection-diffusion equation with constant velocity p, q and r 
and constant molecular diffusivity a, b and c in the  x, y and z 
directions respectively. The unsteady convection diffusion of any 
scalar ߶ can be expressed as 
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(16) 

Where Ω is a three dimensional domain in Թ in	ሾܮ௫ ൈ ௬ܮ ൈ  .௭ሿܮ
The initial condition is given by 

 ߶ሺݔ, ,ݕ ,ݖ 0ሻ ൌ ߶ሺݔ, ,ݕ ,ሻݖ ሺݔ, ,ݕ ሻݖ ∈ Ω (17) 

and the boundary condition 
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ሺݔ, ,ݕ ,ݖ ሻݐ ൌ ݃ሺݔ, ,ݕ ,ݖ ,ሻݐ

ሺݔ, ,ݕ ሻݖ ∈ ߲Ω, t ∈ ሺ0, Tሿ 
(18) 

In this case ζଵ ൌ 1	and ζଶ ൌ 0 corresponds to the Dirichlet 
boundary condition and ζଵ ൌ 0	and ζଶ ൌ 1 corresponds to the 



Neumann boundary condition. ल is the outward unit normal 
vector of the domain. 

The source terms	ܵ, ߶ and ݃ are given smooth functions. For 
convenience, let us define three finite difference operators 
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Hence equation (16) can be rewritten as 
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Using the Crank-Nicholson scheme, discretising the above 
equation in the time interval [0, T] with increment Δݐ ൌ ܶ/ܰ 
where N is the total number of time steps, we get 
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Here ߶ is the approximation of ߶ሺݔ, ,ݕ ,ݖ ݊Δݐሻ for an arbitrary 
function	߶ሺݕ, ,ݖ  ሻ. Collecting terms in ߶ାଵand ߶ݐ
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Further modification by factorization of the above equation gives 
(assuming all coefficients to be constant) 
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We note that the term ሺሺΔݐሻଶ/4ሻࣦ௫ࣦ௬ࣦ௭ሺ߶ାଵ െ ߶ሻ on the 
RHS of the above equation has an order of accuracy of ࣩሺΔݐଷሻ 
because	߶ାଵ െ ߶ ൎ Δݐ. Hence this term can be accumulated in 
the truncation error 
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To discretise equation (16) we divide the domain Ω into a 
uniform grid with a grid size	Δݕ ൌ ௫ܮ ሺ ௫ܰ െ 1ሻ⁄  ,  Δݕ ൌ
௬ܮ ሺ ௬ܰ െ 1⁄ ሻ and Δݖ ൌ ௭ܮ ሺ ௭ܰ െ 1ሻ⁄  in the ݕ ,ݔ and ݖ directions 
respectively. Moreover, if we denote ߶,,

  as an approximation 

of ߶൫ݔ, ,ݕ ,ݖ ,ݔ൯ for an arbitrary function ߶ሺݐ ,ݕ ,ݖ  ሻ andݐ
dropping the truncation error the above equation is written as 
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This equation can be solved by splitting the operators using 
D’Yakonov Alternating Directional Implicit scheme (D’yakonov 
1963) and introducing two intermediate variables ߶∗∗ and ߶∗ 
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The above operation creates three one-dimensional equations 
which can be solved by the CCD method. The sixth order 
accurate CCD formulas (10) and (11) combined with boundary 
equations (12) and (13) can be used by replacing ݄ with	Δx Δݕ 
and Δݖ to solve equations (25) - (27)  respectively with an 
accuracy of ࣩሺΔݔ  Δݕ  Δݖ  Δݐଶሻ 

We have to calculate the right hand side of equation (25) which 
requires computing the first and second derivatives of ߶,,

  with 
higher order accuracy beforehand. For periodic boundary 
conditions, equation (10)-(13) are sufficient to calculate ߶

ᇱ and 
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boundary these equations provide 2(N-1) equations with 2N 
unknowns. Therefore we need two additional boundary CCD 
equations 
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The boundary condition for ߶∗ and ߶∗∗ are calculated from the 
following equations for Dirichlet type boundaries.  

߶,,
∗ ൌ ൬1 െ

Δݐ
2
ࣦ௫൰݃,,

ାଵ 
(30) 

߶,,
∗∗ ൌ ൬1 െ

Δݐ
2
ࣦ௬൰ ൬1 െ

Δݐ
2
ࣦ௫൰݃,,

ାଵ 
(31) 

Numerical Experiments 

We consider a prototypal partial differential equation (16) in a 
three-dimensional cubic domain 0  ,ݔ ,ݕ ݖ  2,	for which the 
analytical solution is  
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The initial and Dirichlet boundary conditions are directly taken 
from the exact solution. For a uniform grid size	ሺΔݔ ൌ Δݕ ൌ
Δz ൌ 0.025ሻ, we keep the diffusivity constant ሺܽ ൌ ܾ ൌ 0.01ሻ 
and vary the convection velocity , ,ݍ ݎ ൌ 0.8, 8, 80, 800 to 
observe the effect of Peclet number	ሺܲ݁ ൌ  ሻ. The resultingܽ/ݔΔ
solutions after time ݐ ൌ 1.25 sec are represented in Figure 1 (a-d) 
and Figure 2 (a-b). 

 
1(a) 

 
1(b) 



1(c) 
 

1(d) 

Figure 1. Comparison between the exact and  numerical solutions using 
the present method, 1(a) Pe = 2, 1(b) Pe = 20, 1(c) Pe = 200, 1(d) Pe = 

2000 at z = 1.0 

From Figure 1, it can be clearly observed that the CCD-ADI 
scheme developed in this paper generates results that are in close 
agreement with the analytical solution. 

 
2(a) 

   
2(b) 

Figure 2. Comparison of the CCD-ADI solution with exact solution	0 
,ݔ ݕ  2, ݐ ൌ 1.25, ܲ݁ ൌ 2; (a)	ݖ ൌ 0.2, (b) ݖ ൌ 1.2 

Furthermore, in Figure 2, it can be observed that the cross-
sectional area-averaged value of the quantity ߶ at two different z-
locations (z = 0.2 and z = 1.2) are very closely matched with the 
analytical solution which again confirms the high degree of 
accuracy of the present scheme. 

The temporal accuracy can be extended to fourth order by 
performing a Richardson extrapolation. The method can be 
shown to be unconditionally stable.  

Conclusions 

In this work, we have developed a sixth order spatially accurate 
and second order temporally accurate three-point compact 
combined difference scheme to solve the advection-diffusion 
equation in three dimensions. The numerical method is extremely 
robust, and it reproduces analytical solutions over a wide range of 
Peclet numbers with a high degree of fidelity. 
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